01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

文章目录1. 导入包2. 预览数据3. 逻辑回归4. 神经网络4.1 定义神经网络结构4.2 初始化模型参数4.3 循环4.3.1 前向传播4.3.2 计算损失4.3.3 后向传播4.3.4 梯度下降4.4 组建Model4.5 预测4.6 调节隐藏层单元个数4.7 更改激活函数4.8 更改学习率4.9 其他数据集下的表现

选择题测试:
参考博文1
参考博文2

建立你的第一个神经网络!其有1个隐藏层。

1. 导入包

# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

%matplotlib inline

np.random.seed(1) # set a seed so that the results are consistent

2. 预览数据

可视化数据

X, Y = load_planar_dataset()
# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)
红色的标签为 0, 蓝色的标签为 1,我们的目标是建模将它们分开

数据维度

### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = X.shape[1] # training set size
### END CODE HERE ###

print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))

The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!

3. 逻辑回归

# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);

# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, Y)
plt.title("Logistic Regression")

# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
'% ' + "(percentage of correctly labelled datapoints)")

Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)
数据集是线性不可分的,逻辑回归变现的不好,下面看看神经网络怎么样。

4. 神经网络

模型如下:

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)
对于一个样本

x(i)x^{(i)}

x(i) 而言:

z[1](i)=W[1]x(i)+b[1](i)z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}

z[1](i)=W[1]x(i)+b[1](i)

a[1](i)=tanh(z[1](i))a^{[1] (i)} = \tanh(z^{[1] (i)})

a[1](i)=tanh(z[1](i))

z[2](i)=W[2]a[1](i)+b[2](i)z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}

z[2](i)=W[2]a[1](i)+b[2](i)

y^(i)=a[2](i)=σ(z[2](i))\hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})

y^​(i)=a[2](i)=σ(z[2](i))

yprediction(i)={1ifa[2](i)>0.50otherwisey_{\text {prediction}}^{(i)}=\left\{\begin{array}{ll}1 & \text { if } a^{[2](i)}>0.5 \\ 0 & \text { otherwise }\end{array}\right.

yprediction(i)​={10​ifa[2](i)>0.5otherwise​

得到所有的样本的预测值后,计算损失:

J=1mi=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small

J=−m1​i=0∑m​(y(i)log(a[2](i))+(1−y(i))log(1−a[2](i)))

建立神经网络的一般方法:

1、定义神经网络结构(输入,隐藏单元等)
2、初始化模型的参数
3、循环:
—— a、实现正向传播
—— b、计算损失
—— c、实现反向传播,计算梯度
—— d、更新参数(梯度下降)

编写辅助函数,计算步骤1-3
将它们合并到 nn_model()的函数中
学习正确的参数,对新数据进行预测

4.1 定义神经网络结构

定义每层的节点个数

# GRADED FUNCTION: layer_sizes

def layer_sizes(X, Y):
"""
Arguments:
X -- input dataset of shape (input size, number of examples)
Y -- labels of shape (output size, number of examples)

Returns:
n_x -- the size of the input layer
n_h -- the size of the hidden layer
n_y -- the size of the output layer
"""
### START CODE HERE ### (≈ 3 lines of code)
n_x = X.shape[0] # size of input layer
n_h = 4
n_y = Y.shape[0] # size of output layer
### END CODE HERE ###
return (n_x, n_h, n_y)

4.2 初始化模型参数

随机初始化权重 w,偏置 b 初始化为 0

# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
"""
Argument:
n_x -- size of the input layer
n_h -- size of the hidden layer
n_y -- size of the output layer

Returns:
params -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1)
"""

np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.

### START CODE HERE ### (≈ 4 lines of code)
W1 = np.random.randn(n_h, n_x)*0.01 # randn 标准正态分布
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h)*0.01
b2 = np.zeros((n_y, 1))
### END CODE HERE ###

assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))

parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}

return parameters

4.3 循环
4.3.1 前向传播

根据上面的公式,编写代码

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
"""
Argument:
X -- input data of size (n_x, m)
parameters -- python dictionary containing your parameters
(output of initialization function)

Returns:
A2 -- The sigmoid output of the second activation
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
"""
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
### END CODE HERE ###

# Implement Forward Propagation to calculate A2 (probabilities)
### START CODE HERE ### (≈ 4 lines of code)
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
### END CODE HERE ###

assert(A2.shape == (1, X.shape[1]))

cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}

return A2, cache

4.3.2 计算损失

计算了 A2,也就是每个样本的预测值,计算损失

J=1mi=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small

J=−m1​i=0∑m​(y(i)log(a[2](i))+(1−y(i))log(1−a[2](i)))

# GRADED FUNCTION: compute_cost

def compute_cost(A2, Y, parameters):
"""
Computes the cross-entropy cost given in equation (13)

Arguments:
A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
parameters -- python dictionary containing your parameters W1, b1, W2 and b2

Returns:
cost -- cross-entropy cost given equation (13)
"""

m = Y.shape[1] # number of example

# Compute the cross-entropy cost
### START CODE HERE ### (≈ 2 lines of code)
logprobs = Y*np.log(A2)+(1-Y)*np.log(1-A2)
cost = -np.sum(logprobs)/m
### END CODE HERE ###

cost = np.squeeze(cost) # makes sure cost is the dimension we expect.
# E.g., turns [[17]] into 17
assert(isinstance(cost, float))

return cost

4.3.3 后向传播

一些公式如下:
01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)
激活函数的导数,请查阅

sigmoid
01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

a=g(z);g(z)=ddzg(z)=a(1a)a=g(z) ;\quad g^{\prime}(z)=\frac{d}{d z} g(z)=a(1-a)

a=g(z);g′(z)=dzd​g(z)=a(1−a)
tanh
01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

a=g(z);g(z)=ddzg(z)=1a2a=g(z) ; \quad g^{\prime}(z)=\frac{d}{d z} g(z)=1-a^2

a=g(z);g′(z)=dzd​g(z)=1−a2

sigmoid 下损失函数求导

# GRADED FUNCTION: backward_propagation

def backward_propagation(parameters, cache, X, Y):
"""
Implement the backward propagation using the instructions above.

Arguments:
parameters -- python dictionary containing our parameters
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
X -- input data of shape (2, number of examples)
Y -- "true" labels vector of shape (1, number of examples)

Returns:
grads -- python dictionary containing your gradients with respect to different parameters
"""
m = X.shape[1]

# First, retrieve W1 and W2 from the dictionary "parameters".
### START CODE HERE ### (≈ 2 lines of code)
W1 = parameters['W1']
W2 = parameters['W2']
### END CODE HERE ###

# Retrieve also A1 and A2 from dictionary "cache".
### START CODE HERE ### (≈ 2 lines of code)
A1 = cache['A1']
A2 = cache['A2']
### END CODE HERE ###

# Backward propagation: calculate dW1, db1, dW2, db2.
### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
dZ2 = A2-Y
dW2 = np.dot(dZ2, A1.T)/m
db2 = np.sum(dZ2, axis=1, keepdims=True)/m
dZ1 = np.dot(W2.T, dZ2)*(1-np.power(A1, 2))
dW1 = np.dot(dZ1, X.T)/m
db1 = np.sum(dZ1, axis=1, keepdims=True)/m
### END CODE HERE ###

grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}

return grads

4.3.4 梯度下降

选取合适的学习率,学习率太大,会产生震荡,收敛慢,甚至不收敛

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate = 1.2):
"""
Updates parameters using the gradient descent update rule given above

Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients

Returns:
parameters -- python dictionary containing your updated parameters
"""
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
### END CODE HERE ###

# Retrieve each gradient from the dictionary "grads"
### START CODE HERE ### (≈ 4 lines of code)
dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
## END CODE HERE ###

# Update rule for each parameter
### START CODE HERE ### (≈ 4 lines of code)
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
### END CODE HERE ###

parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}

return parameters

4.4 组建Model

将上面的函数以正确顺序放在 model 里

# GRADED FUNCTION: nn_model

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
"""
Arguments:
X -- dataset of shape (2, number of examples)
Y -- labels of shape (1, number of examples)
n_h -- size of the hidden layer
num_iterations -- Number of iterations in gradient descent loop
print_cost -- if True, print the cost every 1000 iterations

Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""

np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]

# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y".
# Outputs = "W1, b1, W2, b2, parameters".
### START CODE HERE ### (≈ 5 lines of code)
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
### END CODE HERE ###

# Loop (gradient descent)

for i in range(0, num_iterations):

### START CODE HERE ### (≈ 4 lines of code)
# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
A2, cache = forward_propagation(X, parameters)

# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
cost = compute_cost(A2, Y, parameters)

# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
grads = backward_propagation(parameters, cache, X, Y)

# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
parameters = update_parameters(parameters, grads, learning_rate=1.2)

### END CODE HERE ###

# Print the cost every 1000 iterations
if print_cost and i % 1000 == 0:
print ("Cost after iteration %i: %f" %(i, cost))

return parameters

4.5 预测

predictions={1ifactivation>0.50otherwisepredictions = \begin{cases}
1 & \text{if}\ activation > 0.5 \\
0 & \text{otherwise}
\end{cases}

predictions={10​ifactivation>0.5otherwise​

# GRADED FUNCTION: predict

def predict(parameters, X):
"""
Using the learned parameters, predicts a class for each example in X

Arguments:
parameters -- python dictionary containing your parameters
X -- input data of size (n_x, m)

Returns
predictions -- vector of predictions of our model (red: 0 / blue: 1)
"""

# Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
### START CODE HERE ### (≈ 2 lines of code)
A2, cache = forward_propagation(X, parameters)
predictions = (A2 > 0.5)
### END CODE HERE ###

return predictions

建立一个含有1个隐藏层(4个单元)的神经网络模型

# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)

# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))

Cost after iteration 0: 0.693048
Cost after iteration 1000: 0.288083
Cost after iteration 2000: 0.254385
Cost after iteration 3000: 0.233864
Cost after iteration 4000: 0.226792
Cost after iteration 5000: 0.222644
Cost after iteration 6000: 0.219731
Cost after iteration 7000: 0.217504
Cost after iteration 8000: 0.219550
Cost after iteration 9000: 0.218633

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

# Print accuracy
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')

Accuracy: 90%

可以看出模型较好地将两类点分开了!准确率 90%,比逻辑回归 47%高不少。

4.6 调节隐藏层单元个数

plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i+1)
plt.title('Hidden Layer of size %d' % n_h)
parameters = nn_model(X, Y, n_h, num_iterations = 5000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
predictions = predict(parameters, X)
accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.25 %
Accuracy for 20 hidden units: 90.5 %
Accuracy for 50 hidden units: 90.75 %

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)
可以看出:

较大的模型(具有更多隐藏单元)能够更好地适应训练集,直到最大的模型过拟合了
最好的隐藏层大小似乎是n_h=5左右。这个值似乎很适合数据,而不会引起明显的过拟合
稍后还将了解正则化,它允许你使用非常大的模型(如n_h=50),而不会出现太多过拟合

4.7 更改激活函数

将隐藏层的激活函数更改为 sigmoid 函数,准确率没有使用tanh的高,tanh在任何场合几乎都优于sigmoid

Accuracy for 1 hidden units: 50.5 %
Accuracy for 2 hidden units: 59.0 %
Accuracy for 3 hidden units: 56.75 %
Accuracy for 4 hidden units: 50.0 %
Accuracy for 5 hidden units: 62.25000000000001 %
Accuracy for 20 hidden units: 85.5 %
Accuracy for 50 hidden units: 87.0 %

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

将隐藏层的激活函数更改为 ReLu 函数,似乎没有用,感觉是需要更多的隐藏层,才能达到效果

def relu(X):
return np.maximum(0, X)

Accuracy for 1 hidden units: 50.0 %
Accuracy for 2 hidden units: 50.0 %
Accuracy for 3 hidden units: 50.0 %
Accuracy for 4 hidden units: 50.0 %
Accuracy for 5 hidden units: 50.0 %
Accuracy for 20 hidden units: 50.0 %
Accuracy for 50 hidden units: 50.0 %

报了些警告

C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\
ipykernel_launcher.py:20: RuntimeWarning: divide by zero encountered in log
C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\
ipykernel_launcher.py:20: RuntimeWarning: invalid value encountered in multiply
C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\
ipykernel_launcher.py:35: RuntimeWarning: overflow encountered in power
C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\
ipykernel_launcher.py:35: RuntimeWarning: invalid value encountered in multiply
C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages
\ipykernel_launcher.py:35: RuntimeWarning: overflow encountered in multiply

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

4.8 更改学习率

采用 tanh 激活函数,调整学习率检查效果

学习率 2.0

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.75 %
Accuracy for 5 hidden units: 90.25 %
Accuracy for 20 hidden units: 91.0 %
Accuracy for 50 hidden units: 91.25 % best

学习率 1.5

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 89.75 %
Accuracy for 5 hidden units: 90.5 %
Accuracy for 20 hidden units: 91.0 % best
Accuracy for 50 hidden units: 90.75 %

学习率 1.2

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.25 % best
Accuracy for 20 hidden units: 90.5 %
Accuracy for 50 hidden units: 90.75 %

学习率 1.0

Accuracy for 1 hidden units: 67.25 %
Accuracy for 2 hidden units: 67.0 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.0 % best
Accuracy for 20 hidden units: 91.0 % best
Accuracy for 50 hidden units: 90.75 %

学习率 0.5

Accuracy for 1 hidden units: 67.25 %
Accuracy for 2 hidden units: 66.5 %
Accuracy for 3 hidden units: 89.25 %
Accuracy for 4 hidden units: 90.0 %
Accuracy for 5 hidden units: 89.75 %
Accuracy for 20 hidden units: 90.0 % best
Accuracy for 50 hidden units: 89.75 %

学习率 0.1

Accuracy for 1 hidden units: 67.0 %
Accuracy for 2 hidden units: 64.75 %
Accuracy for 3 hidden units: 88.25 %
Accuracy for 4 hidden units: 88.0 %
Accuracy for 5 hidden units: 88.5 %
Accuracy for 20 hidden units: 88.75 % best
Accuracy for 50 hidden units: 88.75 % best

大致规律:

学习率太小,造成学习不充分,准确率较低
学习率越大,需要越多的隐藏单元来提高准确率?(请大佬指点)

4.9 其他数据集下的表现

均为tanh激活函数,学习率1.2

dataset = "noisy_circles"
01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

Accuracy for 1 hidden units: 62.5 %
Accuracy for 2 hidden units: 72.5 %
Accuracy for 3 hidden units: 84.0 % best
Accuracy for 4 hidden units: 83.0 %
Accuracy for 5 hidden units: 83.5 %
Accuracy for 20 hidden units: 79.5 %
Accuracy for 50 hidden units: 83.5 %

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

dataset = "noisy_moons"
01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

Accuracy for 1 hidden units: 86.0 %
Accuracy for 2 hidden units: 88.0 %
Accuracy for 3 hidden units: 97.0 % best
Accuracy for 4 hidden units: 96.5 %
Accuracy for 5 hidden units: 96.0 %
Accuracy for 20 hidden units: 86.0 %
Accuracy for 50 hidden units: 86.0 %

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

dataset = "blobs"
01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

Accuracy for 1 hidden units: 67.0 %
Accuracy for 2 hidden units: 67.0 %
Accuracy for 3 hidden units: 83.0 %
Accuracy for 4 hidden units: 83.0 %
Accuracy for 5 hidden units: 83.0 %
Accuracy for 20 hidden units: 86.0 % best
Accuracy for 50 hidden units: 83.5 %

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

dataset = "gaussian_quantiles"
01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

Accuracy for 1 hidden units: 65.0 %
Accuracy for 2 hidden units: 79.5 %
Accuracy for 3 hidden units: 97.0 %
Accuracy for 4 hidden units: 97.0 %
Accuracy for 5 hidden units: 100.0 % best
Accuracy for 20 hidden units: 97.5 %
Accuracy for 50 hidden units: 96.0 %

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)
不同的数据集下,表现的效果也不太一样。

我的CSDN博客地址 https://michael.blog.csdn.net/

长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

原创:https://www.panoramacn.com
源码网提供WordPress源码,帝国CMS源码discuz源码,微信小程序,小说源码,杰奇源码,thinkphp源码,ecshop模板源码,微擎模板源码,dede源码,织梦源码等。

专业搭建小说网站,小说程序,杰奇系列,微信小说系列,app系列小说

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

免责声明,若由于商用引起版权纠纷,一切责任均由使用者承担。

您必须遵守我们的协议,如果您下载了该资源行为将被视为对《免责声明》全部内容的认可-> 联系客服 投诉资源
www.panoramacn.com资源全部来自互联网收集,仅供用于学习和交流,请勿用于商业用途。如有侵权、不妥之处,请联系站长并出示版权证明以便删除。 敬请谅解! 侵权删帖/违法举报/投稿等事物联系邮箱:2640602276@qq.com
未经允许不得转载:书荒源码源码网每日更新网站源码模板! » 01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)
关注我们小说电影免费看
关注我们,获取更多的全网素材资源,有趣有料!
120000+人已关注
分享到:
赞(0) 打赏

评论抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

您的打赏就是我分享的动力!

支付宝扫一扫打赏

微信扫一扫打赏